VINCENZO G. ALBANO, PIER L. BELLON aND GIANFRANCO CIANI
Istituto di Chimica Generale ed Inorganica, Universita' degli Studi,21, via Venezian, 20133 Milano (Italy) (Received March 18th, 1971)

SUMMARY
The addition of CS_{2} to hydridotris(triphenylphosphine)dicarbonylrhenium results in the formation of (dithioformato)bis(triphenylphosphine)dicarbonylrhenium. This complex crystallizes in the triclinic space group $P \overline{1}$; the reduced ceil has dimensions : $a 10.481(15) \AA, b=12.471(15) \AA, c=14.878(15) \AA, \alpha=81.78(7)^{\circ}, \beta=$ $74.03(7)^{\circ}, \gamma=107.37(7)^{\circ}, V=1735 \AA^{3}$. The observed density is $1.63(2) \mathrm{g} / \mathrm{cm}^{3}$ while the computed density for $Z=2$ is $1.615 \mathrm{~g} / \mathrm{cm}^{3}$. Intensities of 2682 independent reflections, having $\sigma(I) / I<0.25$, were measured by counter methods using a molybdenum source and a silicon monochromator. The structure was refined by full matrix least squares to a final R factor of 0.039 . The crystal consists of a packing of discrete monomeric molecules; the distorted octahedral coordination around the metal atom has approximately a $C_{2 v}$ symmetry. The dithioformate anion chelates on rhenium atom with bonding parameters Re-S $2.500(3) \AA$ and $2.532(5) \AA, \mathrm{C}-\mathrm{S} 1.64(2) \AA$ and $1.68(2) \AA$ and $S-C-S 116.7(1)^{\circ}$. The mean length of the two $\operatorname{Re}-P$ bonds is $2.42 \AA$ and that of the two $\mathrm{Re}-\mathrm{C}$ bonds is $1.91 \AA$. The $\mathrm{Re}-\mathrm{C}-\mathrm{O}$ interactions appear to be disordered and so does the chelate anion. On the basis of the present determination probable structures are suggested for other addition products formed from CS_{2} and $\mathrm{Rh}^{\mathrm{III}}$ and Ir^{I} complexes.

INTRODUCTION

A series of novel reactions based on addition of carbon disulphide to hydrido, alkyl and aryl complexes of rhodium, iridium and platinum has been recently reported by Wilkinson and coworkers ${ }^{1}$. Typical examples are the reaction of $\operatorname{IrH}(\mathrm{CO})_{2}$ $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{3}$ to give $\operatorname{Ir}(\mathrm{CO})\left(\mathrm{CS}_{2} \mathrm{H}\right)\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ and the reaction of $\mathrm{RhI}_{2}\left(\mathrm{CH}_{3}\right)$ $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{3}$ to give $\mathrm{RhI}_{2}\left(\mathrm{CS}_{2} \mathrm{CH}_{3}\right)\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$. Freni et al. ${ }^{2}$ found that $\mathrm{ReH}(\mathrm{CO})_{2}-$ $\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{3}$ reacts with CS_{2} to give the diamagnetic complex $\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{CS}_{2} \mathrm{H}\right)[\mathrm{P}-$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$, complete reaction occurring when the hydrido complex is allowed to react for one hour in boiling CS_{2}.

IR and NMR spectra do not answer the question of whether the insertion of CS_{2} in metal hydrides results in the formation of dithioformato complexes ML_{n} $\left(\mathrm{HCS}_{2}\right)$ or dithio acids $\mathrm{ML}_{n}(\mathrm{CSSH})$; equally uncertain is whether complexes of di-
thioanions $\mathrm{ML}_{r}\left(\mathrm{RCS}_{2}\right)$ or dithioesters $\mathrm{ML}_{n}(\mathrm{CSSR})$ result when the parent complexes are alkyl or aryl derivatives ${ }^{1,2}$. The oxygen analogs of all these possible products are fairly well known. A formato complex has been described recently ${ }^{3}$, which results from the insertion of CO_{2} in $\mathrm{CoH}\left(\mathrm{N}_{2}\right)\left[P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{3}$, and it has been demonstrated ${ }^{4}$ that the unstable intermediate in the formation of hydrides from cationic carbonyl complexes possesses a carboxylic group bonded to the metal. On the other hand, carboalkoxy derivatives of, say, iridium are well characterized compounds ${ }^{5}$, and so are the complexes of carboxylate anions.

The determination of the crystal structure of $\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{HCS}_{2}\right)\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ was undertaken in order to solve the problem of whether acids or dithioformato complexes result upon insertion of CS_{2} in the isoelectronic Re^{1} and $\mathrm{Rh}^{\text {IIt }}$ hydrides. When we began this determination, no structural reports had appeared on $\mathrm{Re}-\mathrm{S}$ interactions nor on carbonylphosphine complexes of this metal; another aim of this work was, therefore, to gain some knowledge of these structural aspects of rhenium chemistry.

EXPERIMENTAL

Crystal data

$\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{HCS}_{2}\right)\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}, M=842.2$, gives yellow crystals of an oblique prismatic habit. The reduced cell has the following dimensions $a=10.481$ (15) \AA, $b=12.471$ (15) $\AA, c=14.878$ (15) $\AA, \alpha=81.78(7)^{\circ}, \beta=74.03(7)^{\circ}, \gamma=107.37(7)^{\circ}, V=$ $1735 \AA^{3}$, space group $P \overline{1}, C_{i}^{1}$ (No. 2), $D_{\text {meas. }}=1.63(2) \mathrm{g} \cdot \mathrm{cm}^{-3}$ (by flotation in iodomercurate), $D_{\text {calc. }}=1.613 \mathrm{~g} \cdot \mathrm{~cm}^{-3}, Z=2$.

The cell dimensions obtained from precession photographs were refined with the " ω-lag" method ${ }^{6}$ on the Pailred diffractometer with Mo- $K \alpha_{1}$ radiation ($\lambda=$ 0.70930).

Intensity measurements

The crystal used in the collection of intensities was an oblique parallelopiped having dimensions, in mm , of $0.05 \times 0.10 \times 0.26$, mounted along the c axis-the direction of maximum elongation-on the linear equi-inclination Pailred diffractometer. The incident radiation was the Mo-K α doublet, obtained by monochromatisation of the primary beam on a silicon single crystal. The intensities were measured within the limit of $2 \theta=47^{\circ}$, using the ω scan technique at a rate of $0.5^{\circ} / \mathrm{min}$; the scan interval for each reflection varied from 1° to 2° depending upon the equi-inclination angle. The backgrounds were measured for one minute at the lower and upper limits of the scanning range.

The crystal reflecting power was monitored by measuring a small set of standard rellections during the data collection; no decay was apparent, so all the intensities belonging to the various levels of the reciprocal lattice (from $h k 0$ to $h k 11$) were given the same scale factor throughout the refinement. The integrated intensities were then corrected for Lorentz, polarisation and absorption effects ($\mu=39.9 \mathrm{~cm}^{-1}$). The transmission factors, computed with the Busing and Levy routine ${ }^{7}$ with a point sampling $6 \times 6 \times 6(=216)$, were in the range $0.69 \cdot 0.83$. The polarisation correction was applied, taking account of the partial polarisation of the incident monochromatized beam ${ }^{8}$.

From all the observed intensities a final set of 2682 independent F_{0} 's was gathered, corresponding to all observations measured with a relative counting statis-
tical error, $\sigma(I) / I$, less than 0.25 *.

Determination and refinement of the structure

The structure was solved by the conventional Patterson and Fourier techniques. After location and preliminary refinement of the co-ordinates of the rhenium atom, a difference Fourier synthesis allowed the positions of all non hydrogen atoms to be recovered. The conventional R factor, based upon the contribution of all these atoms was 0.13.

The least squares refinement was carried out in two steps. In the first (a block refinement), the Re atom was treated anisotropically and all the remaining atoms isotropically; the phenyl rings were treated as rigid C_{6} groups of $D_{6 h}$ symmetry, with a $\mathrm{C}-\mathrm{C}$ bond length of $1.395 \AA$. In a Fourier difference computed at the end of this stage ($R=0.072$), all the hydrogen atoms of the phenyl rings appeared in their expected positions. The second stage of refinement, by full matrix least squares, included the anisotropic thermal parameters of all the non-group atoms; the groups were treated as rigid $\mathrm{C}_{6} \mathrm{H}_{5}$ rings, each one with a mean isotropic thermal factor. This second stage converged to the following reliability indices: $R=\Sigma\left(\left\|F_{\mathrm{o}}|-| F_{\mathrm{c}}\right\|\right) / \Sigma\left|F_{\mathrm{o}}\right|=0.039$ and $R_{w}=\left(\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w \cdot\left|F_{\mathrm{o}}\right|^{2}\right)^{\frac{1}{2}}=0.049$. The weighting scheme adopted is given by the expression: $w=1 /\left(7+10^{-2} \times\left|F_{0}\right|+5 \times 10^{-4} \times\left|F_{0}\right|^{2}\right)$; the coefficients in the polynomial were chosen in order to obtain an approximately constant value of the mean $\left(w \cdot \Delta F^{2}\right)$ over the entire range of F and of $\sin \theta / \lambda$.

The structure factor and least squares computations were based upon the atomic scattering factors of Cromer and Mann for Re, S, P, and C atoms ${ }^{9}$; the hydrogen scattering factor was that given by Forsyth and Welis ${ }^{10}$. The real and imaginary contribution. All the remaining signals were in the range $\pm 0.3 \mathrm{e}^{-} / \AA^{3}$; no putations ${ }^{11}$.

A final Fourier difference revealed one signal of about 1.5 electrons per \AA^{3} in the position of the Re atom. This was probably due to the combined effect of possible inaccuracy in the tabulated corrections for anomalous dispersion and to the fact that the Fourier summation-a complex function when anomalous scatterers are involved, even if the space group has centres of symmetry-did not include the imaginary contribution. All the remaining signals were in the range $- \pm 0.3 \mathrm{e}^{-} / \AA^{3}$; no signals were obtained corresponding to the presence of an hydrogen atom associated with the metal atom nor with the CS_{2} group.

Computations

All the computations described in this paper were carried out on an IBM 7040 computer. Counter data reduction, absorption correction and statistical analysis for weighting schemes were based upon Fortran programs written in the Authors' laboratory. For Fourier analyses, structure factors and least squares, local versions were used of the following entries in the 1966 "International World List of Crystallographic Programs": 7528, 7531, 7532 and 7535 ; a program written by Domenicano and Vaciago of the University of Rome was used in the computation of the molecular parameters.
(continued on p. 8i)

[^0]TABLE 1
STRUCTURE FACTOR MODULI IN ELECTRONS FOR $\operatorname{Re}\left(\mathrm{HCS}_{2}\right)(\mathrm{CO})_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3}\right]_{2}$

[^1]

 ค,

 ค copoogo 11 自

 Noffir

J. Organomatai. Chem, 31 (1971) 75--87

TABLE 2
POSITIONAL AND THERMAL PARAMEIERS OF NONGROUP ATOMS ${ }^{\text {a-c }}$

Atom	x / a	y / b	z/c	β_{11}	β_{12}	β_{13}	β_{22}	β_{23}	β_{33}
Re	$-1409(1)$	1165(1)	2669 (0)	$74(1)$	$55(1)$	-47(1)	$41(0)$	-32(0)	36(0)
S(1)	1231 (4)	2129 (3)	2104(3)	86(4)	$53(6)$	-74(6)	72(3)	-50(5)	80(3)
S(2)	-459 (4)	1052(3)	4058(3)	189(6)	149 (8)	-141(7)	91 (4)	-73(5)	59(3)
$\mathrm{P}(1)$	-1182(3)	-705(3)	2606 (2)	91 (4)	74 (5)	-48(5)	46(3)	-33(4)	35(2)
$\mathrm{P}(2)$	-1598(3)	3024(3)	2788 (2)	70 (4)	42(5)	-38(5)	$44(3)$	-32(4)	37(2)
O(1)	-4585(10)	64(8)	3788 (8)	69(13)	43(17)	13(16)	79 (9)	8(13)	74(8)
O(2)	-1830 (11)	1342 (8)	704 (8)	177(17)	104(21)	-77(17)	97 (10)	-43(13)	44(7)
$C(1)$	-3409(16)	455(10)	3346(10)	135(22)	$60(23)$	-91(23)	25(10)	-11(15)	46(9)
C(2)	- 1685(12)	1308(10)	1447(11)	76(17)	$54(20)$	-39(19)	43(10)	-21(15)	53(10)
C(3)	1162(16)	1745(14)	3227(13)	129 (22)	105(30)	-109(28)	91 (15)	-96(24)	10(15)

${ }^{a}$ All values $\times 10^{4} .{ }^{b}$ The $\beta_{i j}$ are the coefficients of the form : $h^{2} \cdot \beta_{11}+k^{2} \cdot \beta_{22}+l^{2} \cdot \beta_{33}+h \cdot k \cdot \beta_{12}+h \cdot l \cdot \beta_{13}+$ $k \cdot l \cdot \beta_{23}$. ${ }^{\text {c }}$ The numbers in parentheses here and in the succeeding tables are the esd's on last significant digits.

TABLE 3
RIGD-GROUP PARAMETERS AND MEAN LSOTROPIC TEMPERATURE FACTORS OF PHENYL RINGS ${ }^{a, b}$

Group	x / a	y / b	$2 / C$	$\alpha\left({ }^{(1)}\right.$	$\beta\left({ }^{\circ}\right)$	γ (${ }^{\prime}$	$B\left(\AA^{2}\right)$
P(1)R(1)	-2810(6)	-2106(5)	1137(4)	141.7 (3)	-25.6(3)	158.2(3)	4.0(1)
$\mathrm{P}(1) \mathrm{R}(2)$	2339 (6)	-419(5)	1971(5)	69.9 (11)	74.9 (2)	164.7(11)	3.9(1)
$\mathrm{P}(1) \mathrm{R}$ (3)	-2746(6)	-2966(5)	4644(4)	-76.1(4)	33.5(2)	-63.4(4)	3.7 (1)
$\mathrm{P}(2) \mathrm{R}(\mathrm{l})$	-4242(6)	3709 (5)	2125(4)	16.7 (3)	12.9(3)	-97.4(2)	3.4(1)
$\mathrm{P}(2) \mathrm{R}$ (2)	-2286(6)	3262(5)	5147(4)	$-105.7(3)$	6.6(2)	15.2(3)	3.8(1)
$\mathrm{P}(2) \mathrm{R}(3)$	1139 (6)	5509(5)	1306(4)	$111.8(5)$	47.4 (3)	-88.2(4)	4.1 (1)

${ }^{a}(x / a, y / b, z / c) \times 10^{-4}$ is the displacement vector of the center of gravity of a phenyl ring from the cell origin.
${ }^{\Delta} \alpha, \beta$ and γ are the arguments of anticlockwise rotations around three orthogonal axes X, Y and $Z(X$ is in the plane of a and b, Y coincides with b); the phenyl ring in the initial position lies on $X Y$ plane with atoms $C(1)$ and $C(4)$ [the latter in para to $C(1)]$ on the Y axis.

RESUITS AND DISCUSSION

The final list of computed and observed structure factor moduli, in electrons, is given in Table 1. Table 2 gives the positional and thermal co-ordinates of all nongroup atoms; Tables 3 and 4 list the group parameters and the individual co-ordinates for the atoms treated in rigid groups; bond distances and angles are reported in Table 5 , whereas Table 5 gives the r.m.s. displacements for all the atoms which have been treated anisotropically.

The structure consists of a packing of discrete monomeric molecules. A survey of all possibie inter-molecular contacts does not reveal any unusual features.

The molecule, as shown in Fig. 1, displays a distorted octahedral co-ordination around the metal atom. Two cis positions are occupied by the sulphur atoms of the CS_{2} group which chelates on the metal atom thereby closing a four membered ring; the two CO groups occupy the pair of positions trans to the sulphur atoms; the phosphine groups, trans one to the other, complete the octahedron. This scheme of

TABLE 4
postitional parameters of phenylic carbon atoms.b

Atom	x / a	y / b	z/c	Atom	x / a	y / b	$2 / c$
C(111)	-1995(9)	-1444(10)	1789(7)	C(211)	-3042(9)	3359 (8)	2452(7)
C(112)	-3375(9)	-1501 (7)	1885(6)	C(212)	-3953(9)	2588(6)	2116(7)
C(113)	-4076(7)	-2070(8)	1323(6)	C(213)	-4988(7)	2890(6)	1835(6)
C(i14)	-3397(8)	-2584(8)	666(6)	C(214)	-5109(7)	3962(6)	1889 (6)
C(115)	-2019(8)	-2526(7)	570 (6)	C(215)	-4197(8)	4733(5)	2225 (6)
C(116)	-1317(7)	-1957(9)	1132(7)	C(216)	-3164(8)	4430(7)	2506 (7)
C(121)	$664(11)$	-630(37)	2256 (7)	C(221)	-1930(9)	3199(9)	4032(5)
C(122)	1537(11)	-220(25)	1294(6)	C(222)	-836(7)	3518(8)	4411 (5)
C(123)	2979 (8)	-39(10)	1048(5)	C(223)	-1145(7)	3573(7)	5372 (6)
C(124)	3547 (9)	-268(27)	1765(6)	C(224)	-2544(8)	3306 (7)	5952(4)
C(125)	2674 (9)	-677(16)	2728 (5)	C(225)	$-3635(6)$	2987 (7)	5573 (5)
C(126)	1232 (8)	-858(19)	2974 (5)	C(226)	-3328(8)	2933 (8)	4612 (6)
C(131)	-2033(12)	-1888(6)	3700(5)	C(231)	-99(13)	4347 (8)	2040 (6)
C(132)	-1940(8)	-2964(7)	3627 (4)	C(232)	533(13)	4352(6)	1084 (7)
C(133)	-2552(10)	-3892(6)	4440(6)	C(233)	1597(8)	5352(7)	451 (5)
C(134)	-3260(10)	-3744(6)	5326(5)	C(234)	$2031(10)$	6347 (7)	776 (5)
C(135)	-3354(8)	-2688(7)	5400(5)	C(235)	1401(1)	6342(6)	1731 (6)
C(136)	-2739(12)	-1739(6)	4587(6)	C(236)	336(9)	5343 (8)	2363(5)

${ }^{a}$ All values $\times 10^{4}$. ${ }^{\text {b }}$ Atoms from $\mathrm{C}(111)$ to $\mathrm{C}(116)$ belong to the phenyl $\mathrm{P}(1) \mathrm{R}(1)$.

Fig. 1. Overall view by ORTEP of the molecule $\operatorname{Re}\left(\mathrm{HCS}_{2}\right)(\mathrm{CO})_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$. The ellipsoids have been drawn at 40% probability.
coordination allows the minimum interaction between two bulky PR_{3} ligands and is probably adopted because of this.

TABLE 5
distances (\AA) and angles $\left({ }^{\circ}\right)$ within the molecule $\operatorname{Re}(\mathrm{CO})_{2}\left(\mathrm{HCS}_{2}\right)\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$

Bonds involving the rhenium atom	
$\operatorname{Re}-S(1)$	$2.500(3)$
$\operatorname{Re}-S(2)$	$2.532(5)$
$\operatorname{Re}-\mathrm{P}(1)$	$2.426(4)$
$\operatorname{Re}-\mathrm{P}(2)$	$2.412(4)$
$\operatorname{Re}-\mathrm{C}(1)$	$1.91(1)$
$\mathrm{Re}-\mathrm{C}(2)$	$1.91(2)$
$\mathrm{S}(1)-\mathrm{Re}-\mathrm{S}(2)$	$68.4(1)$
$\mathrm{P}(1)-\mathrm{Re}-\mathrm{P}(2)$	$177.6(1)$
$\mathrm{C}(1)-\mathrm{Re}-\mathrm{C}(2)$	$91.9(6)$
$\mathrm{SS}(1)-\mathrm{Re}-\mathrm{P}(1)$	$90.8(1)$
$\mathrm{S}(1)-\mathrm{Re}-\mathrm{P}(2)$	$88.3(1)$

Bonds involving the dithioformato ligand

$S(1)-C(3)$	$1.64(2)$
$S(2)-C(3)$	$1.68(1)$
$S(1)-C(3)-S(2)$	$116.7(1)$

Bonds involving the carbonyl ligands

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.14(2)$
$\mathrm{C}(2)-\mathrm{O}(2)$	$1.15(2)$

Bonds involving the phosphine ligands

$\mathrm{P}(1)-\mathrm{C}(111)$	$1.86(1)$
$\mathrm{P}(1)-\mathrm{C}(121)$	$1.83(2)$
$\mathrm{P}(1)-\mathrm{C}(131)$	$1.83(1)$
$\mathrm{P}(2)-\mathrm{C}(211)$	$1.86(1)$
$\mathrm{P}(2)-\mathrm{C}(221)$	$1.85(1)$
$\mathrm{P}(2)-\mathrm{C}(231)$	$1.84(1)$
$\operatorname{Re}-\mathrm{P}(1)-\mathrm{C}(111)$	$114.8(4)$
$\operatorname{Re}-\mathrm{P}(1)-\mathrm{C}(121)$	$112.8(9)$
$\operatorname{Re}-\mathrm{P}(1)-\mathrm{C}(131)$	$119.1(3)$
$\operatorname{Re}-\mathrm{P}(2)-\mathrm{C}(211)$	$117.2(3)$
$\operatorname{Re}-\mathrm{P}(2)-\mathrm{C}(221)$	$112.0(4)$
$\operatorname{Re}-\mathrm{P}(2)-\mathrm{C}(231)$	$118.7(4)$

Most relevant non-bonding distances

$\mathrm{Re}-\mathrm{C}(3)$	$2.95(2)$
$\mathrm{Re}-\mathrm{O}(1)$	$3.05(1)$
$\mathrm{Re}-\mathrm{O}(2)$	$3.06(1)$
$\mathrm{S}(1)-\mathrm{S}(2)$	$2.830(5)$
$\mathrm{S}(1)-\mathrm{P}(1)$	$3.508(5)$
$\mathrm{S}(1)-\mathrm{P}(2)$	$3.423(6)$
$\mathrm{S}(2)-\mathrm{P}(1)$	$3.365(6)$
$\mathrm{S}(2)-\mathrm{P}(2)$	$3.563(6)$

$S(1)-\operatorname{Re}-C(1)$	$168.7(5)$
$S(1)-R e-C(2)$	$99.1(3)$
$S(2)-R e-P(1)$	$85.4(1)$
$S(2)-R e-P(2)$	$92.2(1)$
$S(2)-R e-C(1)$	$100.8(5)$
$S(2)-\operatorname{Re}-C(2)$	$99.6(2)$
$P(1)-\operatorname{Re}-C(1)$	$91.6(4)$
$P(1)-\operatorname{Re-C}(2)$	$90.4(4)$
$P(2)-R e-C(1)$	$88.8(4)$
$P(2)-\operatorname{Re}-C(2)$	$92.0(4)$

$\operatorname{Re}-S(1)-C(3)$	$88.3(5)$
$\operatorname{Re}-S(2)-C(3)$	$86.5(7)$

$\mathrm{Re}-\mathrm{C}(1)-\mathrm{O}(1)$	$176(1)$
$\mathrm{Re}-\mathrm{C}(2)-\mathrm{O}(2)$	$176(1)$

$P(1)-C(111)-C(114)$	$175.9(5)$
$P(1)-C(121)-C(124)$	$173.0(9)$
$P(1)-C(131)-C(134)$	$177.5(6)$
$P(2)-C(211)-C(214)$	$177.2(4)$
$P(2)-C(221)-C(224)$	$176.2(5)$
$P(2)-C(231)-C(234)$	$174.4(7)$
$C(111)-P(1)-C(121)$	$107(1)$
$C(111)-P(1)-C(131)$	$98.8(4)$
$C(121)-P(1)-C(131)$	$102(1)$
$C(211)-P(2)-C(221)$	$103.4(5)$
$C(211)-P(2)-C(231)$	$98.8(5)$
$C(221)-P(2)-C(231)$	$104.7(4)$

$S(1)-C(2)$	$3.38(2)$
$S(2)-C(1)$	$3.45(2)$
$P(1)-C(1)$	$3.13(2)$
$P(1)-C(2)$	$3.10(2)$
$P(2)-C(1)$	$3.05(1)$
$P(2)-C(2)$	$3.13(1)$
$C(1)-C(2)$	$2.75(2)$

Apart from the phenyl rings, the symmetry of the molecule is approximately $C_{2 v}$, with the twofold axis bisecting the angles $\mathrm{S}(1)-\mathrm{Re}-\mathrm{S}(2)$ and $\mathrm{C}(1)-\mathrm{Re}-\mathrm{C}(2)$ and the two planes passing through $\mathrm{Re}, \mathrm{S}(1), \mathrm{S}(2), \mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3)$ and, respectively, Re , $P(1), P(2), C(3)$. The angle between the "best planes" ${ }^{12}$ defined by the two sets of atoms is $86.4(1)^{\circ}$.

Although in the final Fourier difference no signals indicating an hydrogen

TABLE 6
root-mean-square displacenents (\AA) of principal axes of thermal ellipsoms for non-group atoms

Atom	Axis 1	Axis 2	Axis 3	Mean esd.
Re	0.148	0.166	0.195	0.001
S(1)	0.187	0.220	0.280	0.006
S(2)	0.181	0.215	0.307	0.007
P(1)	0.149	0.177	0.209	0.007
P(2)	0.159	0.176	0.195	0.007
$O(1)$	0.16	0.23	0.31	0.02
$O(2)$	0.20	0.25	0.28	0.02
$C(1)$	0.11	0.19	0.26	0.03
$C(2)$	0.16	0.19	0.23	0.03
$C(3)$	0.21	0.22	0.32	0.03

atom associated with the CS_{2} group were observed there are a number of reasons to believe that the hydrido ligand of the parent $\mathrm{R} \in \mathrm{H}(\mathrm{CO})_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}$ has been transferred to the carbon atom of the entering CS_{2} molecule, which thus becomes a dithioformato ligand.

The following considerations favour such a view. Firstly, it has been shown that CS_{2} in itself bonds to metal atoms via one S atom and the C atom, the bonded group being merely the molecule in its first excited state ${ }^{13}$. The substantial equivaience of the $\mathrm{S}-\mathrm{C}$ and $\mathrm{Re}-\mathrm{S}$ bonds in the present complex (however, see below for a possible disorder) indicates that the electron density is the same on both sulphur atoms and supports an electronic distribution similar to that of carboxylate anions:

The rour-membered ring is comparable with similar rings in complexes of anions of a number of dithio acids and dithiocarbamic acids. A survey of recent structural reports on such compounds^ shows that very often the chelate ring possesses equivalent $\mathrm{C}-\mathrm{S}$ bonds; in dithiocarbamates the distances vary from $1.66 \AA$ to $1.80 \AA$, most of them falling around $1.70 \AA$; in chelating anions of dithioacids this spread is from $1.58 \AA$ to $1.72 \AA$. In both classes of compounds the $S-C-S$ angle is in a range of $110^{\circ}-120^{\circ}$. So, from the point of view of the bonding parameters, the chelate group observed in this structure, with distances C-S of $1.64(2) \AA$ and $1.68(1) \AA$ and an angle of $116.7(1)^{\circ}$, is a typical dithioanion.

These arguments are consistent with the observed diamagnetism of the complex and with the fact that no NMR signals assignable to a $\mathrm{Re}-\mathrm{H}$ interaction could be detected ${ }^{2}$. On the other hand, a coordinated hydrido ion would have significantly distorted the observed coordination pattern.

In the light of this result, the isoelectronic $\mathrm{Rh}^{\text {III }}$ and the Ir^{I} compounds referred

[^2]upon in the introduction can be considered as the hexacoordinated (I) and the pentacoordinated (II) complexes shown below:

(I)

(II)

Structural reports on Re complexes are relatively scarce so that comparison of the data on the $\operatorname{Re}-\mathrm{S}, \mathrm{Re}-\mathrm{P}$ and $\mathrm{Re}-\mathrm{CO}$ bonds with those previous obtained is informative. No data on $\mathrm{Re}-\mathrm{S}$ bond lengths were available until very recently, but comparison could be made with the structure of $\mathrm{Mo}(\mathrm{NO})\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{3}$ (ref. 16). In this compound the six $\mathrm{Mo}-\mathrm{S}$ interactions ($2.53 \AA$ to $2.57 \AA$) are comparable with those found here $[2.500(3) \AA$ to $2.532(5) \AA]$. While we were writing this article however, results have been published of a structural investigation into two $\mathrm{Re}^{\mathbf{v}}$ dithiocarbamates: $\mathrm{Re}_{2} \mathrm{O}_{3}\left[\mathrm{~S}_{2} \mathrm{CN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{4}$ and $\mathrm{ReN}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}{ }^{17}$; the ranges reported for the $\mathrm{Re}-\mathrm{S}$ distances are $2.40-2.47 \AA$ and $2.38-2.39 \AA$, respectively.

The metal phosphorus distances in this structure $[2.426(4) \AA$ and $2.412(4) \AA]$ are to be compared with the values of: $2.34 \AA$ in $\mathrm{ReH}_{3}\left[\mathrm{P}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]_{2}{ }^{18}$, $2.36-2.39 \AA$ in $\mathrm{ReH}_{3}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}\left[\mathrm{P}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{19}$, $2.45-2.48 \AA$ in $\mathrm{ReOCl}_{3}-$ $\left[\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{2}{ }^{20}, 2.45 \AA$ in $\operatorname{ReNCl}{ }_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2}{ }^{21}$, and, lastly, 2.44-2.49 \AA in $\operatorname{ReNCl} L_{2}\left[P\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]_{3}{ }^{22}$.

As for the $\mathrm{Re}-\mathrm{C}-\mathrm{O}$ interactions, the $\mathrm{Re}-\mathrm{C}$ distances of 1.91 (1) and 1.91 (2) \AA and the CO distances of $1.14(2)$ and $1.15(2) \AA$ are to be compared with the following (mean) values: $1.89 \AA$ and $1.16 \AA$ in $\left[\left(\mathrm{B}_{9} \mathrm{C}_{2} \mathrm{H}_{11}\right) \mathrm{Re}(\mathrm{CO})_{3}\right]^{-23}, 1.91 \AA$ and $1.19 \AA$ in $\left[\operatorname{Re}_{4}(\mathrm{CO})_{16}\right]^{2-}{ }^{24}, 1.95 \AA$ and $1.15 \AA$ in $\operatorname{Re}_{2} \mathrm{MnH}(\mathrm{CO})_{14}{ }^{25}$, and $2.00 \AA$ and $1.12 \AA$ in $\mathrm{Tc}_{2}(\mathrm{CO})_{10}{ }^{26}$.

In the complex we examined there are, however, indications of disorder concerning to Re-C-O interactions. As can be seen in Fig. 2, the directions of the maximum apparent displacements of both carbon atoms, almost coincident with the $\operatorname{Re}-C$ and the $\mathrm{C}-\mathrm{O}$ bonds, is contrary to what would be expected on the basis of stretching and bending energies. The observed situation can be interpreted as an averaging of different $\mathrm{Re}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds. Apparently this disorder does not affect the oxygen atoms, the thermal ellipsoids for which show the expected orientation. This happens, probably, because in a metal-carbonyl interaction an increase of the M-C distance (bond order decreasing) causes a shortening of the \mathbf{C} - O distance (bond order increasing) and vice versa, so that the positional parameters of the oxygen atom probably remain relatively unaffected by such a disorder in the position of the carbon atom.

A peculiar feature is also present in the thermal motion of the HCS_{2}^{-}group. Here, the orientations of the three thermal ellipsoids suggest either that the group is rocking as whole around the metal atom or that two actually different $\mathrm{C}-\mathrm{S}$ bonds are averaged by a disorder. It is not possible, from the present data, to decide between the two models; the effect is probably connected with the disorder in the CO groups which are trans to the sulphur atoms.

We intend to continue the investigation into these kinds of complex with a dual purpose, to collect more data on the structures of complexes of addition of CS_{2}

Fig. 2 An ORTEP drawing of the $\operatorname{Re}\left(\mathrm{HCS}_{2}\right)(\mathrm{CO})_{2}$ moiety. Thermal ellipsoids at 40% probability.
and of related species and also to elucidate if possible the nature of the disorder observed in the structure described above.

ACKNOWLEDGEMENTS

This work was made possible by financial aid from the National Research Council of Italy. The Authors wish to thank M. Freni, who prepared beautiful crystals, and V. Scatturin for their interest in this work and for discussions.

REFERENCES

1 D. Commereuc, I. Douek and G. Whkinson, J. Chem. Soc. A, (1970) 1771.
2 M. Freni, D. Giusto and P. Romit, submitted for publication.
3 L. S. Pu, A. Yamamoto and S. Ikeda, J. Amer. Chem. Soc., 90 (1968) 3896.
4 E. L. Muetterties, Inorg. Chem., 4 (1965) 1841.
5 L. Malatesta, M. Angoletta and G. Caglio, J. Chem. Soc. A, (1970) 1836; V. G. Albano, P. L. Bellon and M. Sansoni, Inorg. Chem., 8 (1969) 298.
6 J. Hornstra, Report 4021, N. V. Philips Gloeilampen Fabriek, Eindhoven, Netherlands, 1965.
7 W. R. Busng and H. A. Levy, Acta Crystallogr., 10 (1957) 180.
8 W. L. Bond, Acta Crystallogr., 12 (1959) 375.
9 D. T. Cromer and J. B. Mann, Acta Crystallogr. Sect. A, 24 (1968) 321.
10 J. B. Forsyth and M. Wells, Acta Crystallogr., 12 (1959) 412.
11 International Tables for X-Ray Crystallography, Vol. III, 1962.
12 W. C. Hamilton, Acta Crystallogr., 14 (1961) 185.
13 R. Mason and A. I. M. Rae, J. Chem. Soc. A, (1970) 1767; M. Baird, G. Hartwell, R. Mason, A. I. M. Rae and G. Wilkinson, Chem. Commun., (1967) 92; T. Kashiwagl, N. Yasuoka, T. Ueki, N. Kasay and M. Kakudo, Bull. Chem. Soc. Jap., 40 (1967) 1998.

14 A. Domenicano, L. Torelli, A. Vaciago and l. Zambonelli, J. Chem. Soc. A, (1968) 1351; K. Bowmann and Z. Dori, Chem. Commun., (1968) 636; M. Bonamico and G. Dessy, Chem. Commten., (1968) 483; P. T. Beurskens, H. J. A. Blaauw, J. A. Cras and J. J. Steggerda, Inorg. Chem., 7 (1968) 805; D. Brown, D. G. Holah and C. E. F.-Rickard, J. Chem. Soc. A, (1970) 423; G. M. Sheldrick
and W. S. Sheldrick, J. Chem. Soc. A, (1970) 490; R. F. Dalton and K. Jonbs, J. Chem. Soc. A, (1970) 493; G. R. Davies, J. A. J. Jarvis, B. T. Kllbourn, R. H. B. Mais and P. G. Owston, J. Chem. Soc. A, (1970) 1275; see also ref. 16.
15 M. Bonamió and G. Dessy, Ric. Sci., 38 (1968) iin; M. Bonamico and G. Dissy, Chem. Commun.; (1968) 483; M. Bonamico, G. Dessy and V. Fares, Chem. Commum., (i969) 324; M. Bonamico, G. Dessy and V. Fares, Chem. Commun., (1969) 697; M. Bonamico, G. Dessy and V. Fares, Chem. Commun., (1969) 1106.
16 T. F. Brennan and I. Bernal, Chem. Commun., (1970) 138.
17 S. R. Fletcher, J. F. Rowbottom, A. C. Skapski and G. Wilkinson, Chem. Commun., (1970) 1572.
18 V. G. Albano, unpublished results.
19 V. G. Albano, P. L. Bellon And V. Scatturin, Rend. Ist. Lomb. Sci. Lett. A, 100 (1966) 989.
20 H. W. W. Ehrlich and P. G. Owston, J. Chem. Soc., (1963) 4368.
21 R. J. Doedens and J. A. Ibers, Inorg. Chem., 6 (1967) 204.
22 P. W. R. Corfield, R. J. Doedens and J. A. Ibers, Inorg. Chem., 6 (1967) 197.
23 A. Zalkin, T. E. Hopkins and D. H. Templeton, Inarg. Chem., 5 (1966) 1189.
24 M. R. Churchill and R. Bau, Inorg. Chem., 7 (1968) 2606.
25 M. R. Churchill and R. Bay, Inorg. Chem., 6 (1967) 2086.
26 M. F. Balley and L. F. Dahl, Inorg. Chem., 4 (1965) 1140.

[^0]: * The counting statistical esd. of the net intensity I is equal to $\left(I_{\text {beak }}+t^{2} \cdot I_{\text {herkground }}\right)^{\frac{1}{2}}, t$ being the ratio between times spent on peak and background measurement.

[^1]: J. Organometal. Chem., 31 (1971) 75-87

[^2]: * For recent structural determinations on metal dithiocarbamates and on metal dithiocarboxylates see refs. 14 and 15 , respectively.

